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Analysis of the single-fiber fragmentation test

S. LEE*, T. NGUYEN?, J. CHIN, T.-J. CHUANG
National Institute of Standards and Technology, Gaithersburg, MD 20899 USA

An analysis of the single-fiber fragmentation test was investigated. An approximate
solution for the stress fields of a fiber embedded in a polymer matrix of different elastic
moduli was obtained by the Eshelby method. The fiber was modeled as a prolate spheroid.
The axial stress of the fiber increases with increasing aspect ratio and fiber-matrix shear
modulus ratio and decreases with increasing matrix and fiber Poisson’s ratios. Using this
analysis, the fracture stress of a single-fiber fragmentation specimen was derived. The
applied stress at fiber fracture decreases monotonically with increasing aspect ratio of the
fragmented fiber and increases with increasing fiber and matrix Poisson’s ratios. This
model is in qualitative agreement with published experimental data. © 7998 Kluwer
Academic Publishers

1. Introduction fiber based on the superposition of an exact far-field
Fiber-reinforced polymeric composites have beersolution and approximate transient solution. eiual
widely used in machines and structures because dfi4] applied computer simulation to describe the frag-
their combination of low weight and high strength. Onementation process of the fiber in a single-fiber com-
method commonly used for characterizing the interfafosite. Mai and co-workers [7, 8, 15] studied the fiber-
cial strength between a fiber and the surrounding matrixeinforced composites with regard to the matrix-fiber
is the single-fiber fragmentation test. In this techniquejnterface conditions: full bonding, partial debonding,
a fiber is embedded in a polymer matrix coupon and and full frictional bonding. Gent and Wang [16] and
tensile load is applied to the coupon. With increasingLiu et al. [17] addressed the effect of realistic prob-
load, the fiber fractures into shorter and shorter fragiems, such as fiber cracking and interfacial debonding,
mentations until the shear stress transfer across the i their analyses.
terface is insufficient to cause further fracture of the Treatments of fibers as elastic inclusions have been
fiber. The interfacial shear stress is then estimated frorstudied. Selvadurai and Rajapakse [18] considered a
the fragment length distribution [1-8]. Because of therigid cylindrical inclusion embedded in an elastic half
random nature of fiber fracture, the critical fragmenta-space subjected to axial, lateral, and rotational loading.
tion aspect ratio was widely analyzed using the WeibullFolias [19] calculated the stress fields in the neighbor-
distribution [2—8]. Mai and co-workers [7, 8] used the hood of the intersection of a cylindrical inclusion and
Weibull probability of failure to predict the average ten- a free surface under tension. Kasagtoal. [20] ob-
sile strength of a fiber. The Weibull probability was alsotained the stress fields in an infinite body having a rigid
applied to carbon fibers [9]. cylindrical inclusion of finite length using Dougall’s
The single-fiber fragmentation test was originally harmonic stress functions and the Fourier transform.
proposed by Kelly and Tyson [1] for brittle fibers em- Rajapakse [21] solved the solution of an axially loaded
bedded in a copper matrix. The applicability of this rigid inclusion bonded to a non-homogeneous elastic
technique for measuring the interfacial properties ofhalf space. Oel and Frechette [22] calculated the stress
polymer/fiber composites has been verified experimendistribution in a thin disc having a cylindrical inclu-
tally by Schultz and Nardin [10, 11]. They found that sion. Argon [23] obtained an approximate solution for
the fiber/matrix shear strength obtained by the singlethe stresses around a slender elastic rod or platelet in
fiber fragmentation test is linearly proportional to the an infinite elastic solid under uniform strain at infin-
reversible work of adhesion between the two matedity based on the Eshelby inclusion concept [24, 25].
rials for a wide variety of polymer/fiber composites. Using the prolate spheroid to simulate a transverse
Since itsinception, several studies have been performegdotropic fiber based on the Eshelby method, Tandon
to analyze the stress distribution within and near theand Weng [26] investigated the effect of aspect ratio
fibers in polymer composites. Cox [12] used a sheapn the effective elastic moduli of polymer compos-
lag model to analyze the stress state near a broken fibées. These results prompted us to study the single-fiber
end. Whitney and Drzal [13] proposed an analyticalfragmentation test based on the Eshelby approach. In
model to calculate the stress distribution near a brokethis study, the prolate spheroid was used to simulate a
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fiber in a polymer matrix. The fiber strength is relatedin which the Eshelby tenso§j. is a function ofa

to the fiber length based on the Weibull distribution.andc, and the elastic constants of the matrix. Because
The critical aspect ratio is related to the load trans-of ellipsoid of revolution;eiTj can be written as

fer from the matrix to the fiber when the fiber tensile

stress reaches the fiber strength. This study is part of the e, 0 O

ongoing research at the National Institute of Standards Al o & o 5)
and Technology on the application of high-performance Qi = 11 T
polymeric composites in civil engineering structures. 0 0 ey

in which e]; andel; are a function of the aspect ratio,
the elastic constants of both the matrix and the inclu-
2. Stress Analysis sion, and the remote applied stres8. Substituting
As an introduction to our model, consider a single fiberEquation 4 into Equation 3, we obtain
of length Z and diameter @ embedded in a polymer
matrix subjected to an applied uniaxial tensich Both + (1—2v)oh
fiber and matrix are assumed to be elastically isotropic € = T
materials, and their shear moduli and Poisson’s ratios
aren™®, v* andu, v, respectively. The fiber/matrix in- T (1—2v)o”
terface is assumed to be perfectly bonded. Because the €3 = o
fiber length is greater than the diameter by a factor of at

least 10, the fiber can be treated as a prolate spheroighearer, ;| Ta3, and relevant parameters are given in Ap-
The prolate spheroid in the Cartesian coordinate systefangix |. The stresses in the inclusion can be obtained
X1, X2, andxz is defined mathematically by from Equations 3, 6, and 7

Ti1 (6)

Taz (7)

X;+ x5 x5 ol = o M[Si(K) — 1] Tas + [Ra(k) — v Tz} (8)

2 tae=1 @

o33 = o M2[P1(K) — v] 1
The aspect ratié is defined ag/a and is greater than +[Qu(K)—1 + V] Tsg + 1} ©)
unity for a prolate spheroid. According to the stress-
strain relation of the pure matrix, the uniform elastic

A ) _ in which
straine;; arising from the remotely applied stres$ is

P1(K) = v(S1111+ S1129) + (1 —v)Sea11 (10a)

- 0 0\ , Q1(K) = 2vS1133+ (1 — v) S333 (10b)

ef=]l0 o o|ZT )
j o o0 1 E Ri(K) = Si133+ vSg333 (10c)
Si(K) = Si111+ S1122+ 2vSea11 (10d)

where E is the Young’s modulus of the matrix. We h din A dix |

analyze the stress fields of the single fiber embedded ity ereSju are expressed in Appendix |.

a polvmer matrix using the Eshelby anproach If the Poisson’s ratio of the fiber is the same as that
poly 9 : y app : .. of the polymer matrix, the stresses in the inclusion can
Eshelby [24, 25] solved the inclusion inhomogeneity

J . . .be reduced to
based on the equivalent inclusion method. The magni-

tude of the stress is uniform in the prolate spheroid and [ A

L . . . . = —mo"[U u 11

decreases with increasing distance from the inclusion on o "[U11 + vUz3] (11)

for E* > E. In this analysis, we are interested in the 033 = —Mo"[2vU11 + (1 —v)Usz3]  (12)

maximum tensile stress, which is in the inclusion for

E* > E, whereE* is the Young’s modulus of the fiber. in which

The internal stress of the inclusion is given as

Uir = {v — (1 —m)Ru(k)}/U (13)
.'.:)L C_|_ _TS--+2 C_|_ A_al
o = H(Eic+ S~ @)y +2u(ef HEm8) (L= m)S,(0) — 13/U (14
Gar e F2CE ) O o e il (- MR
where A, u and 1*, u* are the Larme’ coefficients of + (1 —m)Qa(k) — 1+ v][( — m)S (k) — 1]
matrix and inclusion, respectively. It is noted that the (15)

Einstein summation convention is used throughout this

paper. The parametel; , is the Kronecker delta. The ' .
constraint straing$, is related to the transformation P1(k), Qu(k), Ru(k), and S(k) are defined in Equa-
! tion 10, and the shear moduli ratm is defined in

. . ™ T
strain or eigenstraig; by Equation A3g. Several special cases are presented as
follows. Whenv = 1/3, Equations 11 and 12 are the
ch = Sjuey (4) same as the counterparts derived by Shibato and Ono
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Figure 1 (a) o44/0” as a function ok; (b) o4,/c* as a function ofn;
and (c)m as a function ok. Solid and dashed lines represent v* =
0.25 and 0.5, respectively.

[27]. Whenm approaches unity{ = n*), M = —1/3
(see Append|x Il for the proof) and therefarg, = oa

anda11 =0, respectlvely Wheh approaches infinity,

o4, becomesno A
Fig. 1a presents the relation betweep/o” andk

sentv = v* =0.25 and 0.5, respectively. Itis found that
o4s/0 ™ increases rapidly with lokj to reach a plateau
and approaches. o4,/0” is equal to unity fom=1
regardless ok because both spheroid and matrix have
the same physical properties. Comparing the solid and
dashed linesyi,/o A is slightly greater for smaller val-
ues of Poisson’s ratio than for larger ones for a given
value ofk. Fig. 1b plotsoi,/o” as a function ofm
with parametelk. The solid and dashed lines repre-
sentv=v*=0.25 and 0.5, respectivelyri,/o” in-
creases withm for a given value ofk. In this case,
o4,/0  decreases slightly with increasing Poisson’s ra-
tio. Fig. 1c plotsm as a function ok with parameter
o4/ ™. Again, the solid and dashed lines correspond
to v=v*=0.25 and 0.5, respectively. The value of
m decreases rapidly with increasikgand approaches
o4s/0 ™ ask approaches infinity.

The effect of the matrix Poisson’s ratio*(z£ v) on
the relationship among axial stress, aspect ratio, and
ratio of shear modulus is shown in Fig. 2, where the
Poisson’s ratio of the fiber is* =0.25. Solid, dot-
ted, and dashed lines correspond te 0.25, 0.37, and
0.5, respectively. The curvesm&/o versus Iog< are
given in Fig. 2a. For a given value &for m, o4z/c*
decreases with increasing For a giverm, the differ-
ence ofog,/0” between two matrix Poisson’s ratios
increases with increasirlg When the aspect ratio ap-
proaches infinity, the axial stress becomes

| m(1 — v* — 2vv*) oA
[oF
BT A rnd_2v

(16)

The effect of the matrix Poisson’s ratio on the curves
of o45/0* versusm is shown in Fig. 2b. For a givek
the difference ofr'g/aA between two matrix Poisson’s
ratios increases with increasing Itis possible that, for
a givenm, o4,/0” is larger for smallek. The curves
of m versusk for dn‘ferentosF/o andv are plotted
in Fig. 2c. For a giverk ando, , mincreases with
increasing. If o35/0 A remams constant, the difference
of mbetween two matrix Poisson’s ratios increases with
decreasing.

3. Fiber fragmentation

If the fiber is perfect, the theoretical cohesive strength
is approximately equal tE*/7 where E* is the
Young’s modulus of the fiber [28]. However, according
to Griffith [29], because the fiber has flaws its tensile
strength is much lower than the theoretical cohesive
strength of a fiber having no defects. The data of ten-
sile strength versus the diametea, f a glass fiber
having a 15.24 cm length given by Giriffith [29] was fit
by the solid line in Fig. 3, using the least-square curve-
fitting method. The line is expressed by the following
equation,

o1 = 0.1544+ 0.01727/(2a) (17)

where the units obi, and 22 are GPa and mm, re-

for various values ofm. This figure was obtained spectively. In addition to the fiber diameter, the tensile
by assuming that both matrix and fiber have thestrength of the fiber is also a function of its length. For
same Poisson’s ratio. Solid and dashed lines repreexample, data for the tensile strength of an AS4 fiber
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“or Figure 3 Effect of fiber diameter and length on fiber tensile strength.

Solid line: tensile strength versus diameter, according to the experimental
data obtained from [26]; dashed line: tensile strength versus gauge length,
according to the experimental data obtained from [30].

0 20 40 80 80 % where the units af, and Z are in GPaand mm, respec-

tively. Equation 18 can be obtained by the Weibull prob-
(®) ability of failure [7, 9]. Therefore, the tensile strength
of fiber is inversely proportional to its diameter and
length.

The fiber embedded in the polymer fractures when
the maximum normal stress reaches the local tensile
strength of the fiber. According to the above stress anal-
ysis, the maximum normal stress is the axial stress in
the fiber. The axial stress increases with the applied
stress, according to Equation 12. Therefore, the single
fiber in the matrix fractures according to the following
equation,

100

80 -

40

“r 0ds = own(a, ©) (19)

o5 = - - - o  Using Equations 12 and 19, we obtain the applied stress
K to fracture the single fibes,*, of a given size embedded
© in the polymer matrix as

Figure 2 Effect of Poisson’s ratio of matrix for: (aj,/o * versus log; A
(b) 545/ * versusm; and (c)m versusk. Solid, dotted, and dashed lines ot = own(a, €)/{2[Py(k) — v]T11

correspond to = 0.25, 0.37, and 0.5, respectively. n [Q (k) 14 v]T 41 (20)
1 - 33

) ) ) Fig. 4 displays plots o #* versusk for different val-
having a diameter of @m versus fiber length, as mea- ,es ofy andm using Equation 20 wheren(a, €) is

sured by Waterbury and Drzal [30], are plotted as theyiyen by Equation 18 fom=3 um. The solid line
dashed line in Fig. 3 and can be fit by the following for |, = 0.35 is calculated using values of=0.35,
equation using the least-square fitting method, v* = 0.25, andn = 68,5, given by [30]. The other solid
lines are calculated using the different matrix Poisson’s
logoin = —0.1491log(Z) + 0.718 (18) ratiosv=0.25 and 0.5. It is found that#* decreases
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critical aspect ratio decreased with increasimgThis
is in qualitative agreement with our prediction.
The effective interfacial shear strength, is defined
as the local fracture stress at the breaking point divided
by twice the critical aspect ratio [1],

08

eX°) oo

oth(Ke)

Tc = k. (21)

o (GPa)

As stated in the Introduction, the fiber length for the
conventional single-fiber fragmentation test is long
enough to break into more than twenty pieces. The two
nearest fibers are able to interact with each other so
005 2 pr % % 70 that the stress state in the system is changed. In addi-
k tion, such a long fiber is possible to allow defects on
the interface. This complicated problem is very diffi-
cultto analyze the stress distribution, if notimpossible.
Therefore, we propose an alternative method in this
paper to measure the critical aspect ratio and critical
interfacial shear strength. A series of fibers of different
lengths were prepared. If the fiber of a certain length
gEmbedded in the polymer is not broken under the ten-
sile test, we increase the fiber length. The process is
yepeated until the fiber embedded in the polymer is
broken. The minimum fiber length (or minimum aspect
ratio) corresponding to the minimum tensile stress after
the fiber broken is used to calculate the critical inter-
facial shear strength. Substitutindg' by the minimum

0.2

Figure 4 Applied stress at fiber fracture as a function of aspect ratio
k. Solid and dashed lines correspondre= 68.5 and 40, respectively,
Poisson’s ratio of fiber* = 0.25.

rapidly with increasing. Further, for a giverk, o
increases with increasing matrix Poisson’s ratio. Th
dashed line is for the cases= 40 andv = 0.35. Com-
paring both solid and dashed lines for the same mattri
Poisson’s ratio, we find that, for a giveno 2 increases
with decreasing ratio of shear modulus of fiber to
matrix.

According to Fig. 4, for a givem, o increases

with decreasingk. It is implied that the fiber in the
& P apubstituting by minimum aspectratio in Equation 21,

stress s large enough. However, the stresses in the fibife get the gritical'interfacial shegr strength. Itshould be
as expressed in Equations 11 and 12 is valid only if thd10ted that, in addition to neglecting the residual thermal
applied load can be transferred from the matrix to the>tress, the above analysis was based on the assumption

fiber. When the aspect ratio decreases to a certain valu ,gt _bOtT the flberl and fmatrl_x are isotropic materlallso.l
o will no longer increase (or Equations 11 and 129PVIously, an analysis for anisotropic properties cou

cannot be used anymore). This value is the so-calle§€ performed_but WOUIFJ be more complicated. E>_<peri-
critical aspect ratio. According to Fig. 4, d /o is ments using fibers having dlﬁergnt lengths and diame-
constant, the critical aspectratio decreases with increa€'s are b(?_lng conducteﬁ to verify the model. he i
ing m. Netravaliet al. [4] used the same carbon fiber __Netravali and co-workers [5, 6] measured the in-
embedded in different epoxies to study the single-fibefcTfacial shear strengths of different fibers embedded
fragmentation test, Values & andm used for Ne- " the same epoxy matrix using the acoustic emission

travali's fiber/matrix systems are presented in Table 1[€Chnique. Their results are given in Table II. The first
Because the fiber was the same for all tes{g/o three rows are from [5] and last two rows are from [6].

can be considered to be roughly constant. With the ex]@Pl€ Il also includes the fiber strengty, given by
commercial sources [31]. Based on these data, the ra-

ti f th flexibl Table 1), their . .
ception of the very flexible epoxy (see Table I) elrt|o of ain(ke) to the cohesive strength is close to 0.1

with the exception of the second row. The local frac-
ture stressiin(Ke) is greater than the tensile strength

TABLE | Fiber fragmentation aspect ratio of carbon fiber in different . . .
provided by the commercial source because, according

epoxies [4]
to the Weibull probability of failurek. is smaller than
Strain rate Epoxy k m the gauge length commonly used for tensile testing.
Therefore, it is possible to use the following empirical
0.004 mar #1 92.68 1716 equation to predict the local tensile strength of a fiber
i; gg:gi ig;:g embedded in the polymer matrix,
#4 84.90 222.4
#5 71.34 410 o = 0.1E* /7 (22)
#6 103.72 517
0.007 mnr? #1 92.96 1716
#2 93.27 172.6
#3 87.72 182.9 4, Discussion
i‘s‘ 33'4112 421%'4 In this study, the prolate spheroid is used to simulate
o 117.02 e a cylindrical fiber. Argon [23] assumed both fiber and

matrix have the same Poisson’s ratio and obtained the

5225



TABLE |l Mean aspect ratil;, mean fragmentation lengt, interfacial shear strength, Young’s modulus of fibeE*, the local fracture stress
oth, and the ratio obp to E* /7, r = otn/(E*/7)

Fiber ke cc (mm) 7 (MPa) oth (GPa) E* (GPa) r (GPa) ot (GPa)
AS-4 graphite 62.04 0.46 60.26 7.48 210 0.11 25
S-2 glass 55.62 0.51 49.26 5.48 88 0.20 4.6
Kevlar 42.86 11.95 43.88 3.76 124 0.10 2.758
E-glass 42.93 0.97 27.50 2.36 77 0.10 2.1
E-glass 44.88 0.96 26.30 2.36 77 0.10 2.1

Note thato+ was obtained from a commercial source [31].

axial stress at the end of fiber in matrix as all curves are equal to 66(m). It is noted that the
stress obtained by Argon is lower than that obtained by
oA _ 1+oak mo A (23) our study for large log and the stress determined by
3B T m+oak Kim et al shifts to the right wherb/a increases. At

b/a= 100, the stress obtained by Kiebal. is the clos-

est to that obtained in this study. For fibers with an as-
pectratiob/a < 10, as in the case of strong fiber/matrix
interface, the presenttreatment starts to deviate from the
true solutions. In such a case, this analysis cannot be
Kim et al [15] considered a single fiber of radias  ysed to predict the interfacial properties. Moreover, the
and length 2 embedded at the center of a coaxially trye stress fields inside the fiber, as well as at the inter-
cylindrical shell of matrix with an outer radils They  face, are not considered by the current treatment. They

in which

a=4(1-v)/3-2v—4? (24)

obtained the axial stress at the center of fiber as may be solved by other methods, such as finite element

1 1 analysis.

053 - Ty [1 _ 7} (25) It should be emphasized that most analyses of the

m+y coshf,c) single-fiber fragmentation test are based on the Weibull
. . distribution of failure using the expression:
in which

_ B
y =a2/(t — a?) (262) Po1- exp[_(i) (" "U> ] 27)
Co 0o

g2 (b® —a%)(1+m/y) in which P is the cumulative probability of failure of

27 (1+v)[b*In(b/a) — (b2 — a2)/2 — (b* — a%)] fiber of length 2 at stresss, B is a shape parameter
(26b) (Weibull modulus)g, is a scaling parameter associated
with the fiber length 2,, andgy is a threshold stress
Fig. 5 displays a comparison of the axial stress obtainetdelow which the failure probalility is zero. However,
by the present study with those provided by the liter-Aslounetal. [32] found that the Weibull distribution did
ature form=60. The solid, dotted, and dashed linesnot adequately describe the length dependence of the
are from our model, Argon’s [23], and Kimtal's fiber strength in the single-fiber composite test. Further,
[15] models, respectively. A& approaches infinity, the fracture stress;, at the fiber critical aspect ratio for
a single-fiber fragmentation specimen has been often
derived from [30, 33] to be

o =c”E*/E (28)

wherecs” is the applied stress as defined earlier. Ac-
cording to our analysis, Equation 28 is valid when the
aspect ratio of the fibek, is infinity and the Poisson’s
ratios of both the fiber and the matrix are the same, so
thatm = E*/E, with 0 = mo” (see Fig. 1a). That is,
Equation 28 generally over-estimates the fracture stress
at the critical aspect ratio of the fiber or at later stages
in a single-fiber fragmentation test.

o'/ o

5. Conclusions

Logk A model for the single-fiber fragmentation test has

been proposed. The fiber is approximated by a pro-

Figure 5 Comparison of axial stress for a fiber embedded in apolymeqate spheroid. Under the action of an applied stress,
matrix obtained by the present study and literature. Solid line: axial stress . . .
on the fiber obtained by the present study; dotted line: axial stress at thgormal str_esses In the_prolate §pher0|d _embed_ded Ina
fiber end obtained by Argon [23]; dashed lines: axial stress at the fibefMatrix of different elastic moduli are obtained using the
center obtained by Kiret al., [15]. Eshelby approach. The maximum normal stress is the
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axial strese ., in the spheroid. The axial stress,/o 1 k*(1+3M)]7 (1-2v)M
in the spheroid increases with the aspect r&tjof the Spass = 20— )|~ k-1 | 21—
spheroid and the ratio of shear modulus of fiber to ma-

trix, m. The value ok decreases with increasingfor (A3e)
afixedogs/o”. The value ob4,/0  decreases with in- 1

creasing Poisson's ratios of matrix and fiber, foragiven = M = . 7— — 1 cosh™(k) (A3f)
mork, butmincreases with increasing Poisson’s ratios

of matrix and fiber for a givek andoj;/a 2. Using this W

approach, the fracture stress of a single fiber/polymer M = — (A39)

matrix composite was analyzed. The analysis was based H

on the assumption that the tensile strength of the fibepfter suitable replacement, the expression§gf are

is inversely proportional to its diameter and length. Theyhe same as those derived by Tandon and Weng [26]. Ac-
applied stress at fiber fracture decreases monotonicallyording to the Eshelby tens@;y is anon-dimensional
with increasing aspect ratio of the broken fiber. For ayarameter. However, Lest al. [34] have reported that
given aspect ratio of broken fiber, the applied stresss,, is proportional to the reciprocal of shear modulus.
at fiber fracture increases with Poisson’s ratios of fibers,,,, (= S33,,) is not equal toSi133 (= S2s9, but Lee
and matrix but decreases with increasimgrhe critical - and co-workers [34] have treated the two quantities as
aspect ratio is determined by the maximum aspect raghe same, that isSs311= Si133

tio at which the load cannot be transferred from matrix
to fiber. The application of this model for determining
the shear strength of fiber/polymer matrix composites

is being investigated. Appendix Il
Assume a function

Appendix | 1 k .
The parameter$;; and Tz are M= k2Z—1 (k2—1)%2 cosir (k)
- _|:m 14 m(v* — v) ] v — R(k, m)
U= T T am20@ ) | 2Pk, m) — v][v — Rk, m)] + [S(k, m) — 1][Q(k, m) — 1 + v]
(Ala)
T _[m ML Cleal)) ] Sk, m) — 1
BT T T @209+ v ] 2Pk, m) — v][v — Rk, m)] + [S(k, m) — 1][Q(k, m) — 1+ ]
(Alb)
in which
P(k, m) = [ - W}(ﬁnﬁr Sz + [1 B Gl o 2”)]53311 (A2a)
— 2v* 1-—2v*
Q(k, m) = 2[\) - w]ﬁﬂs%— [1 -V — m( Ifgil*_ v):|33333 (A2Db)
Rk, m) = |:1 - ml(l_i_ziv)}suss-i- [V - mvl*(_liz—va)]%%g (A2c)
Sk, m) = |:l - %}(Sﬂll‘i‘ Si12) + Z[V - %]S&sn (A2d)
— £V — LV
3 1+ 3M 1—-2v
Siu11= Se22= 8(l—v)|: — 2(k2—1)] 4(1—v)(l+ M) (A3a)
1 1+ 3M 1—2v
2= g [1 T 26— 1)} “aa—npttW (A3D)

1 k)(1+3M) 1-—2v
41-v) k2—1  4(1-v)
1+ 3M (1-21)M
A0 w)k—1)  20=v)

Si133= So33= 1+ M) (A3c)

S311= 32 = (A3d)
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Show that ifk approaches unity, thed = —1/3. 9.
Proof:
10
11.
M = lim { 1 cosh‘l(k)}
= - 12.
k—>1 k-1 (k2 —1)%? 13
= lim = k
Ck—>1|k2—1 (k2—1)32
14.
k2 -1 1/2
X tanh_l ! 15.
k
16
i 1 k (k2 _ 1)1/2 17.
= lim —
k—>1] k2 —1 (k2 —1)3%2 k 18.
1(k? —1)%? 19.
3 K 20
21.
: 1 22.
k"_”Ql{ —@*--'}
23.
_ 1 24,
-3 25.
26.
27.
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